Trace Explorer
The Trace Explorer is your primary tool for investigating AI agent activity. Search across all traces, apply filters, and drill into details.
Overview
Access the Trace Explorer from the main navigation sidebar. It provides:
- Table View - List all traces with sortable columns
- Advanced Filters - Narrow results by multiple criteria
- Detail Drawer - Full trace information without leaving the page
- Bulk Actions - Select and operate on multiple traces
Table View
Columns
The trace table displays key information:
| Column | Description |
|---|---|
| Name | Trace/operation name |
| Agent | Agent that executed the trace |
| Status | Success, Warning, or Error |
| Duration | Execution time |
| Tokens | Input + Output tokens |
| Cost | Estimated cost |
| Time | When the trace occurred |
| Source | Integration source (Langfuse, Databricks, etc.) |
Sorting
Click any column header to sort:
- Click once: Sort ascending
- Click twice: Sort descending
- Click third: Remove sort
Pagination
Navigate through results:
- Page Size: 25, 50, 100 rows per page
- Navigation: First, Previous, Next, Last buttons
- Jump to Page: Enter specific page number
Filtering
Quick Filters
Use the filter bar above the table:
┌─────────────────────────────────────────────────────────────────┐
│ 🔍 Search... Time: [Last 24h ▼] Status: [All ▼] ... │
└─────────────────────────────────────────────────────────────────┘
Available Filters
| Filter | Options |
|---|---|
| Search | Full-text search across all fields |
| Time Range | Last hour, 24h, 7d, 30d, Custom |
| Status | Success, Warning, Error, All |
| Agent | Select from discovered agents |
| Source | Filter by integration |
| Has Violations | Only traces with policy violations |
Advanced Filters
Click "Advanced" to access more filter options:
- Duration Range - Min/max execution time
- Token Range - Min/max token count
- Cost Range - Min/max cost
- Custom Attributes - Filter by metadata fields
Combining Filters
Filters combine with AND logic:
Time: Last 24 hours
AND Status: Error
AND Agent: CustomerService
Saving Filter Presets
Save frequently used filter combinations:
- Configure your filters
- Click "Save Preset"
- Name your preset
- Access from the preset dropdown
Search
Full-Text Search
The search box searches across:
- Trace name/operation
- Agent name
- Input/output content
- Metadata values
- Error messages
Search Syntax
Use operators for precise searches:
| Operator | Example | Description |
|---|---|---|
| Exact phrase | "customer query" | Match exact phrase |
| OR | error OR failed | Match either term |
| NOT | NOT test | Exclude term |
| Field | agent:ChatBot | Search specific field |
Examples
# Find traces with errors from ChatBot
agent:ChatBot status:error
# Find traces mentioning "payment" but not "test"
payment NOT test
# Find exact operation name
"process_order"
Trace Details
Opening Details
Click any trace row to open the detail drawer:
┌──────────────────────────────────────────────────────────────┐
│ Trace Details [×] │
├──────────────────────────────────────────────────────────────┤
│ CustomerService Agent │
│ Operation: customer_support_query │
│ Status: ● Success │
│ │
│ [Overview] [Timeline] [Input/Output] [Metadata] [Violations] │
│ │
│ ... (tab content) ... │
└──────────────────────────────────────────────────────────────┘
Overview Tab
Key metrics at a glance:
- Trace ID - Unique identifier
- Started - Start timestamp
- Duration - Total execution time
- Status - Success/Warning/Error
- Agent - Agent name and version
- Model - LLM model used
- Tokens - Input/Output counts
- Cost - Estimated cost
Timeline Tab
Span breakdown showing execution flow:
customer_support_query [1.23s]
├── fetch_user_context [0.05s]
├── call_llm [0.85s] ─── OpenAI GPT-4
│ ├── input_tokens: 850
│ └── output_tokens: 400
├── query_knowledge_base [0.25s]
└── format_response [0.08s]
Each span shows:
- Name and duration
- Start/end times
- Attributes and metadata
- Nested child spans
Input/Output Tab
View the actual data:
Input:
{
"user_message": "How do I reset my password?",
"session_id": "sess_abc123",
"context": { ... }
}
Output:
{
"response": "To reset your password, follow these steps...",
"confidence": 0.95,
"sources": [ ... ]
}
Metadata Tab
Custom attributes attached to the trace:
agent:
name: CustomerService
version: 2.1.0
type: RAG
model:
name: gpt-4-turbo
provider: openai
temperature: 0.7
user:
id: user_12345
type: human
tier: premium
session:
id: sess_abc123
channel: web
Violations Tab
Policy violations for this trace:
┌─────────────────────────────────────────────────────────────┐
│ Policy Violations (2) │
├─────────────────────────────────────────────────────────────┤
│ ⚠ MEDIUM: Token Limits Exceeded │
│ Policy: Max 2000 tokens, Actual: 2150 tokens │
├─────────────────────────────────────────────────────────────┤
│ 🔴 HIGH: PII Detected │
│ Pattern: Email address in output │
│ Evidence: "user@example.com" │
└─────────────────────────────────────────────────────────────┘
Actions
Single Trace Actions
Right-click a trace or use the action menu:
- View Details - Open detail drawer
- Copy Trace ID - Copy to clipboard
- View in Langfuse - Open in source platform
- Compare - Add to comparison selection
- Export - Download trace data
Bulk Actions
Select multiple traces using checkboxes:
- Check individual traces or "Select All"
- Use the bulk action menu:
- Export Selected - Download as JSON/CSV
- Compare - Open comparison view
- Acknowledge Violations - Mark violations as reviewed
Comparison Mode
Compare multiple traces side-by-side:
- Select 2-4 traces
- Click "Compare"
- View comparison modal:
┌──────────────────────────────────────────────────────────────┐
│ Compare Traces [×] │
├──────────────────┬─────────────┬─────────────┬──────────────┤
│ Metric │ Trace 1 │ Trace 2 │ Trace 3 │
├──────────────────┼─────────────┼─────────────┼──────────────┤
│ Duration │ 1.23s │ 2.15s │ 0.89s │
│ Tokens │ 1,250 │ 2,100 │ 950 │
│ Cost │ $0.042 │ $0.068 │ $0.031 │
│ Status │ Success │ Warning │ Success │
│ Model │ gpt-4 │ gpt-4 │ gpt-4-turbo │
└──────────────────┴─────────────┴─────────────┴──────────────┘
Keyboard Shortcuts
| Shortcut | Action |
|---|---|
/ | Focus search |
Esc | Clear selection / Close drawer |
↑ ↓ | Navigate rows |
Enter | Open selected trace |
c | Compare selected traces |
e | Export selected |
r | Refresh data |
Tips & Best Practices
1. Start Broad, Then Narrow
Begin with a wide time range, then add filters to narrow down.
2. Use Saved Presets
Save filter combinations you use regularly:
- "Production Errors (Last 24h)"
- "My Agent (Last Week)"
- "High-Cost Traces"
3. Leverage Comparison
Compare successful vs failed traces to identify issues:
- Filter to errors
- Find a similar successful trace
- Compare to spot differences
4. Check Violations First
When investigating issues, start with the Violations tab.
Next Steps
- Agent Activity - Visualize agent behavior
- Policy Violations - Understand violation details
- Troubleshooting - Common issues and solutions