Skip to main content

Trace Explorer

The Trace Explorer is your primary tool for investigating AI agent activity. Search across all traces, apply filters, and drill into details.

Overview

Access the Trace Explorer from the main navigation sidebar. It provides:

  • Table View - List all traces with sortable columns
  • Advanced Filters - Narrow results by multiple criteria
  • Detail Drawer - Full trace information without leaving the page
  • Bulk Actions - Select and operate on multiple traces

Table View

Columns

The trace table displays key information:

ColumnDescription
NameTrace/operation name
AgentAgent that executed the trace
StatusSuccess, Warning, or Error
DurationExecution time
TokensInput + Output tokens
CostEstimated cost
TimeWhen the trace occurred
SourceIntegration source (Langfuse, Databricks, etc.)

Sorting

Click any column header to sort:

  • Click once: Sort ascending
  • Click twice: Sort descending
  • Click third: Remove sort

Pagination

Navigate through results:

  • Page Size: 25, 50, 100 rows per page
  • Navigation: First, Previous, Next, Last buttons
  • Jump to Page: Enter specific page number

Filtering

Quick Filters

Use the filter bar above the table:

┌─────────────────────────────────────────────────────────────────┐
│ 🔍 Search... Time: [Last 24h ▼] Status: [All ▼] ... │
└─────────────────────────────────────────────────────────────────┘

Available Filters

FilterOptions
SearchFull-text search across all fields
Time RangeLast hour, 24h, 7d, 30d, Custom
StatusSuccess, Warning, Error, All
AgentSelect from discovered agents
SourceFilter by integration
Has ViolationsOnly traces with policy violations

Advanced Filters

Click "Advanced" to access more filter options:

  • Duration Range - Min/max execution time
  • Token Range - Min/max token count
  • Cost Range - Min/max cost
  • Custom Attributes - Filter by metadata fields

Combining Filters

Filters combine with AND logic:

Time: Last 24 hours
AND Status: Error
AND Agent: CustomerService

Saving Filter Presets

Save frequently used filter combinations:

  1. Configure your filters
  2. Click "Save Preset"
  3. Name your preset
  4. Access from the preset dropdown

The search box searches across:

  • Trace name/operation
  • Agent name
  • Input/output content
  • Metadata values
  • Error messages

Search Syntax

Use operators for precise searches:

OperatorExampleDescription
Exact phrase"customer query"Match exact phrase
ORerror OR failedMatch either term
NOTNOT testExclude term
Fieldagent:ChatBotSearch specific field

Examples

# Find traces with errors from ChatBot
agent:ChatBot status:error

# Find traces mentioning "payment" but not "test"
payment NOT test

# Find exact operation name
"process_order"

Trace Details

Opening Details

Click any trace row to open the detail drawer:

┌──────────────────────────────────────────────────────────────┐
│ Trace Details [×] │
├──────────────────────────────────────────────────────────────┤
│ CustomerService Agent │
│ Operation: customer_support_query │
│ Status: ● Success │
│ │
│ [Overview] [Timeline] [Input/Output] [Metadata] [Violations] │
│ │
│ ... (tab content) ... │
└──────────────────────────────────────────────────────────────┘

Overview Tab

Key metrics at a glance:

  • Trace ID - Unique identifier
  • Started - Start timestamp
  • Duration - Total execution time
  • Status - Success/Warning/Error
  • Agent - Agent name and version
  • Model - LLM model used
  • Tokens - Input/Output counts
  • Cost - Estimated cost

Timeline Tab

Span breakdown showing execution flow:

customer_support_query [1.23s]
├── fetch_user_context [0.05s]
├── call_llm [0.85s] ─── OpenAI GPT-4
│ ├── input_tokens: 850
│ └── output_tokens: 400
├── query_knowledge_base [0.25s]
└── format_response [0.08s]

Each span shows:

  • Name and duration
  • Start/end times
  • Attributes and metadata
  • Nested child spans

Input/Output Tab

View the actual data:

Input:

{
"user_message": "How do I reset my password?",
"session_id": "sess_abc123",
"context": { ... }
}

Output:

{
"response": "To reset your password, follow these steps...",
"confidence": 0.95,
"sources": [ ... ]
}

Metadata Tab

Custom attributes attached to the trace:

agent:
name: CustomerService
version: 2.1.0
type: RAG

model:
name: gpt-4-turbo
provider: openai
temperature: 0.7

user:
id: user_12345
type: human
tier: premium

session:
id: sess_abc123
channel: web

Violations Tab

Policy violations for this trace:

┌─────────────────────────────────────────────────────────────┐
│ Policy Violations (2) │
├─────────────────────────────────────────────────────────────┤
│ ⚠ MEDIUM: Token Limits Exceeded │
│ Policy: Max 2000 tokens, Actual: 2150 tokens │
├─────────────────────────────────────────────────────────────┤
│ 🔴 HIGH: PII Detected │
│ Pattern: Email address in output │
│ Evidence: "user@example.com" │
└─────────────────────────────────────────────────────────────┘

Actions

Single Trace Actions

Right-click a trace or use the action menu:

  • View Details - Open detail drawer
  • Copy Trace ID - Copy to clipboard
  • View in Langfuse - Open in source platform
  • Compare - Add to comparison selection
  • Export - Download trace data

Bulk Actions

Select multiple traces using checkboxes:

  1. Check individual traces or "Select All"
  2. Use the bulk action menu:
    • Export Selected - Download as JSON/CSV
    • Compare - Open comparison view
    • Acknowledge Violations - Mark violations as reviewed

Comparison Mode

Compare multiple traces side-by-side:

  1. Select 2-4 traces
  2. Click "Compare"
  3. View comparison modal:
┌──────────────────────────────────────────────────────────────┐
│ Compare Traces [×] │
├──────────────────┬─────────────┬─────────────┬──────────────┤
│ Metric │ Trace 1 │ Trace 2 │ Trace 3 │
├──────────────────┼─────────────┼─────────────┼──────────────┤
│ Duration │ 1.23s │ 2.15s │ 0.89s │
│ Tokens │ 1,250 │ 2,100 │ 950 │
│ Cost │ $0.042 │ $0.068 │ $0.031 │
│ Status │ Success │ Warning │ Success │
│ Model │ gpt-4 │ gpt-4 │ gpt-4-turbo │
└──────────────────┴─────────────┴─────────────┴──────────────┘

Keyboard Shortcuts

ShortcutAction
/Focus search
EscClear selection / Close drawer
Navigate rows
EnterOpen selected trace
cCompare selected traces
eExport selected
rRefresh data

Tips & Best Practices

1. Start Broad, Then Narrow

Begin with a wide time range, then add filters to narrow down.

2. Use Saved Presets

Save filter combinations you use regularly:

  • "Production Errors (Last 24h)"
  • "My Agent (Last Week)"
  • "High-Cost Traces"

3. Leverage Comparison

Compare successful vs failed traces to identify issues:

  1. Filter to errors
  2. Find a similar successful trace
  3. Compare to spot differences

4. Check Violations First

When investigating issues, start with the Violations tab.


Next Steps